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This study is a continuation of [i], where the author qualitatively examined and cal- 
culated the nonisothermal Couette flow of a non-Newtonian fluid under the influence of a pos- 
itive pressure gradient along a plate in the chosen direction of the x axis. It was shown 
that the phase space of flows of pseudoplastic fluids (flow index n < i) has an integral sur- 
face corresponding to flows with a velocity along the plate which is independent of the co- 
ordinate y perpendicular to the plate (v = du/dy = 0). This corresponds physically to the 
case of motion of the entire plate-liquid system with a constant velocity (in particular, 
to a stationary system). It can be shown that the trajectories of this integral surface are 
singular solutions of the initial system of equations and that the trajectories of the part 
of the phase space v < 0 cross the integral surface into the part of the phase space v > 0, 
i.e., nonisothermal Couette flows with any flow index may have an extreme velocity profile 
under the influence of a pressure gradient. To prove this, phase coordinates different from 
those used in [i] are employed. 

The system of equations describing nonisothermal Couette flows of a non-Newtonian fluid 
with a power rheological law under the influence of a pressure gradient has the form 

ld2T/dy2 + ~2/~ = 0; (i) 

= ~du/dy; (2) 

= ~i Idulay in-i; (3) 

~1 : ~0 exp (--~T);  (4) 

d'~/dy = dp/dx = A6,. (5 )  

where I is the thermal conductivity; T, temperature; ~, shear stress; ~i, effective viscosity; 
D0, 6, and A, constant parameters; 6 = i for flows in which pressure increases along the co- 
ordinate x; 6 = -I for flows in which pressure decreases along the coordinate x; 6 = 0 in 
the absence of a pressure gradient along x. 

After introduction of the variable 

d T / d y = w  

and allowance for Eqs. (2)-(4), Eq. (i) becomes 

(6 )  

~+~ 
�9 dw/dy = - -  I~ I ~ ~ j1 /n  exp (r~/n) .  ( 7 ) 

E q u a t i o n s  ( 5 ) - ( 7 )  c o n s t i t u t e  an i n d e p e n d e n t  s y s t e m  o f  d i f f e r e n t i a l  e q u a t i o n s ,  and i t s  s o l u -  
t i o n  can  be  r e p r e s e n t e d  by t r a j e c t o r i e s  in  a t h r e e - d i m e n s i o n a l  p h a s e  s p a c e  (w, ~, T ) .  How- 
ever, due to the relative simplicity of system (5)-(7), its solution can be represented more 
clearly wihtout loss of generality by trajectories in the plane (w, T) (Fig. I, where 
a shows 6 = 1 and b shows 6 = -i). The intersection of the trajectories with the axis w = 0 
corresponds to the maximum in the temperature profile. Each of the phase planes contains 
a line whose interaction with the trajectories is accompanied by a point of inflec- 
tion in the velocity profile. To find these lines, we will examine the expression for the 
second derivative of velocity [i] 

dv/dy = ~Sn-lvw q- A6(lxln) -1 Iv l -nv  sign v. 
(8) 
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Fig. 2 

On the basis of (2) and (3) we express v in the right side of (8) through ~: 

dv/dy  = n-]~71In (~w~ I~1-1+11n + A61T 1-1+1/") exp (T~ln). ( 9 ) 

I t  f o l l o w s  from (9)  t h a t ,  r e g a r d l e s s  o f  t h e  v a l u e  o f  n,  t h e  d e r i v a t i v e  d v / d y  changes  s i g n ,  
p a s s i n g  t h r o u g h  z e r o ,  on t h e  l i n e s  w = A 6 / ( ~ ) .  These  l i n e s  form h y p e r b o l a s  l o c a t e d  in  t h e  
second  and f o u r t h  q u a d r a n t s  o f  t h e  p l a n e  when 6 = 1 and in  t h e  f i r s t  and t h i r d  q u a d r a n t s  
when 6 = -I. The derivative dv/dy does not change sign on the line �9 = 0, while the velocity 
has an extremum. 

Each phase plane contains three types of trajectories - S+I , S+I' , S+l" in the plane 
6 = 1 and S_~, S_ i, S_z" in the plane 6 = -i. Graphs of the change in temperatures and vel- 
ocities along these trajectories are shown in Fig. Ic, d (part of each trajectory and the 
corresponding integral curve are realized with certain boundary conditions). The trajectories 
differ from one another in the relative location of the extrema in the velocity and tempera- 
ture profiles. In any case, the maximum in the temperature profile is located between the 
points of inflection in the velocity profile. It is evident from Fig. 1 that besides the 
symmetry transformation y + -y, v § w § - relative to which system (1)-(5) is invari- 
ant, as was shown in [i] - the solutions of its equations possess one other type of symmetry: 

x --)" - - x ,  dp /dx  ~ - -dp /dx ,  u -')- - - u .  

It follows from system (5)-(7) and the above analysis that the plane ~ = 0 is nonintegral 
in the three-dimensional phase space (w, ~, T) and the trajectories from the half-space ~ < 0 
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(~ > 0) cross into the half-space �9 > 0 (~ < 0) at 6 = i (6 = -i). However, ~ = 0 only at 
v = 0. This means that crossing of the plane ~ = 0 corresponds to the crossing of the plane 
v = 0, considered in [I], by trajectories into the space (w, v, ~l). However, the planev= 0 is 
integral in the space (w, ~i) at n < i. This can occur only when the trajectories forming the inte- 
gral plane v = 0 are singular solutions.* Thus, regardless of the values of the index n, 
the velocity profile in a nonisothermal Couette flow under the influence of a pressure gradi- 
ent may be extreme. However, the graphs of velocity for flows of pseudoplastic, Newtonian, 
and dilatant fluids have distinctive features. These features are connected with the fact 
that the second derivative of velocity with respect to the independent variable has differ- 
ent values at the extremum of the velocity profile. It follows from Eq. (8) that dv/dYlv= 0 = 
A6/~l is a finite quantity for a flow of a Newtonian fluid, dv/dYlv= 0 = 0 for a pseudoplastic 
fluid, and dv/dYlv= 0 = ~ for a dilatant fluid. The velocity profile with an extremum for the 
dilatant fluid is considerably steeper than for the Newtonian fluid, while the velocity pro- 
file of the pseudoplastic fluid is smoother than for the Newtonian fluid (Fig. 2). 

In the absence of a pressure gradient (6 = 0), Eqs. (5)-(7) are integrable; their solu- 
tions are obtained in [5]. The difference of the index n from unity does not alter the important 
property of these flows observed in [6] for a Newtonian fluid - coincidence of the coordinate 
y of the maximum in the temperature profile with the coordinate y of the point of inflection 
in the velocity profile and the absence of an extremum in the velocity profile. 
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*The works familiar to us do not contain any explanation of conventional methods of proving 
the singularity of solutions in three-dimensional phase spaces (see [2-4], for example). 
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